磁微粒化学发光免疫分析简介
免疫诊断的发展历史
免疫学的发展史起始于微生物学研究,于18世纪建立,19 世纪至 20 世纪中期进入经典发展期。这一时期,人们对免疫功能的认识由人体现象的观察进入了科学实验时期。20世纪初期到中期,进入近代免疫学时期。从20世纪中期开始,真正进入现代免疫学时期。现代免疫学的检测基本历经了以下几个过程,如图1所示。

图1. 免疫检测技术的发展史
第四代 纳米磁微粒管式化学发光
(均相,管式,在溶液中反应,化学发光免疫技术)
第三代 板式化学发光
(非均相,微孔板,板界面反应,化学发光免疫技术)
第二代 酶联免疫技术
(利用活性酶作为标志物的酶联免疫)
第一代 放射免疫技术
(利用放射性同位素作为标记物测量抗原抗体结合)
免疫学检测主要是利用抗原和抗体的特异性反应进行检测,利用同位素、酶、化学发光物质等对检测信号进行放大和显示,常被用于检测蛋白质、激素等微量物质。各类免疫学检测方法的性质及发展状况详见表格1。免疫诊断在临床诊断中占据着非常重要的地位,但是从我国临床免疫诊断现状来看,其步伐都落后于发达国家,亟待改进。
放射性免疫 酶联免疫 化学发光 电化学发光 纳米磁微粒化学发光
检测灵敏度 10-15 10-13 10-15- 10-18 10-17 10-21
精密度(批间差) >15% 10%-15% <10%-15% 5% <10%
线性范围 105 102 106-7 107 107
检测时间 3-4小时 2-3小时 65分钟 10分钟 18-40分钟
放射污染
操作 手工 手工/批量自动化 手工/全自动 全自动 全自动
有效期 2个月 6-12个月 12个月 12个月 12个月
定性/定量 定量 定性/半定量 定量 定量 定量
发展趋势 环境污染,国内处于衰退期;欧美已经完全淘汰。 国内处于成熟期;欧美处于衰退期。 国内处于导入期和成长期;欧美处于成熟期。 可使用项目广泛,罗氏专利技术。 各项目可随机组合使用,国内处于发展期。
表1. 各类免疫检测技术的性质及优缺点
化学发光技术是近二、三十年来发展起来的一种测定方式。该技术的原理是利用化学反应释放的自由能激发中间体(常用碱性磷酸酶-金刚烷胺、辣根过氧化酶-鲁米诺衍生物、辣根过氧化酶-鲁米诺衍生物),使其从激发态回到基态。当中间体从激发态回到基态时会释放等能级的光子,对光子进行测定而进行定量分析(见图2)。化学发光具有荧光的特异性,同时不需要激发光,避免了荧光分析中激发光杂散光的影响从而提高了灵敏度,并且避免了放射分析造成的环境污染和健康危害,是一种非常优秀的定量分析方法。
图2. 化学发光基本原理示意图
化学发光免疫分析(CLIA)是一种高度敏感的微量测定技术,凡具有抗原性的物质(包括半抗原)都可以用CLIA测定。CLIA起步于80年代初,快速发展于90年代具备以下特点 :
①高度敏感,极限达10-17-10-19mol/L,远高于放射性免疫(RIA)、酶联免疫(EIA)。与时间分辨荧光免疫分析(TRFIA)相当,但比TRFIA便宜。
②特异性强,重复性好CV<10%。
③测定范围宽,可达7个数量级。
④试剂稳定性好,无污染有效期12月。
⑤操作简单,易于自动化。
磁微粒化学发光免疫分析是将磁性分离技术、化学发光技术、免疫分析技术三者结合起来的一种新兴分析方法,其基本原理见图3 。该技术充分利用了磁性分离技术的快速易自动化性,化学发光技术的高灵敏度性,以及免疫分析的特异性,在生物分析领域展现了不可替代的作用。
图3. 磁微粒化学发光免疫检测(双抗夹心法)原理示意图
目前磁微粒化学分析免疫分析已经应用于管式化学发光免疫检测项目以及电化学发光免疫检测项目。